
Towards Collaboration-Centric Pattern-Based

Software Development Support

Christoph Dorn

Distributed Systems Group

Vienna University of Technology, Austria

dorn@infosys.tuwien.ac.at

Alexander Egyed

Institute for Systems Engineering and Automation

Johannes Kepler University Linz, Austria

alexander.egyed@jku.at

Abstract—Software engineering activities tend to be loosely
coupled to allow for flexibly reacting to unforeseen development
complexity, requirements changes, and progress delays. This
flexibility comes a the price of hidden dependencies among design
and code artifacts that make it difficult or even impossible to
assess change impact. Incorrect change propagation subsequently
results in costly errors. This position paper proposes a novel
approach based on monitoring engineering activities for subse-
quent high-level pattern detection. Patterns of (i) collaboration
structures, (ii) temporal action sequences, and (iii) artifact
consistency constraints serve as input to recommendation and
automatic reconfiguration algorithms for ultimately avoiding and
correcting artifact inconsistencies.

Index Terms—monitoring, pattern detection, software engi-
neering, recommendation, collaboration structures

I. Introduction

Software development consists of design and development

steps typically performed by multiple software engineers,

using heterogeneous tools, models, and expertise to support

requirements capture, design, implementation, testing, debug-

ging, bug reporting and many other activities. Such activities

tend to be loosely coupled for two main reasons: (i) artifacts

such as requirements, pieces of code, or test scenarios are

created and manipulated by separate engineers potentially even

using different tools and (ii) dealing with changing require-

ments, unforeseen complexity, and progress delays during the

development process requires a high degree of flexibility for

developer coordination and communication.

This results in fragmentation where individual engineers are

perhaps aware of their particular work focus but lack a more

comprehensive overview. It is quite rare to explicitly describe

how various development artifacts depend on one another (e.g.,

traceability). It is virtually never described how or why these

artifacts came about and who created them using what other

artifacts as input. Subsequently, dependencies among develop-

ment artifacts remain implicit. This is particularly a problem

when changes occur because the lack of explicit dependencies

makes it nearly impossible to understand how changes affect

the development artifacts. For example, a requirement change

should not only trigger design/code changes but also changes

to test scenarios, documentation, and other artifacts - artifacts

which likely were created by different engineers/stakeholders

This work is supported in part by the Austrian Science Fund (FWF) under
grant number J3068-N23.

using different tools at different times. A change then should

trigger collaboration among software engineers to update these

artifacts. Not understanding or perceiving the need of such

collaborations is then the root cause for failure to correctly

propagate changes and hence the root cause for inconsistencies

among development artifacts - leading to costly rework and

even project failure.

Our goal is supporting software engineers in perceiving

required collaboration, dependencies among artifacts, and suit-

able actions by means of recommendations and automatic

reconfigurations of the software development environment. To

this end, we propose recording the actions of software engi-

neers, deducing patterns from that information, and exploiting

them for recommendations. We aim at identifying patterns that

reflect three dependencies types: structural collaboration pat-

terns among developers, tasks, and artifact (e.g., what artifacts

do developers read/manipulate and how do they coordinate),

temporal activity patterns (e.g., which sequences of artifact

reading, manipulating, and communication exist), and artifact

dependency patterns (e.g., what relationships exist among the

artifacts - consistency, traceability, etc.). These patterns then

form that basis for adaptation and recommendation techniques

that are aware of the arising structural implications.

II. Motivating Example

Suppose a software development team utilizing dedicated

tools for requirement elicitation, architecture design, code ver-

sioning, bugtracking, and an IDE for source code development.

Additionally team members also apply instant messaging,

email, and document sharing to coordinate their work.

At some stage, the team needs to handle a changing require-

ment demanding a functionality adjustment. Consequently, the

architecture and certain components need analysis to assess

the changed requirement’s impact (i.e., identifying architec-

tural changes that satisfy the changed requirement, if any).

Subsequently identifying affected design artifacts and source

code files, determining necessary tasks to maintain consistency

with other related artifacts, and selecting a suitable set of

developers with the necessary in-depth knowledge and skills

is a tremendous, error prone task. It requires developers to re-

member how they implemented the now-changed requirement

in the past (who previously designed, implemented, tested it)

to appropriately change all affected artifacts.



For this scenario, how can we support the system architect,

when she receives no notification on requirement updates?

How can we determine when architecture changes indirectly

affect source code artifacts? How can the software architect

detect that an affected code artifact has no longer a respon-

sible developer and who might be a suitable replacement? In

the next section we present our approach for a framework

addressing such questions.

III. Approach

Mechanisms and techniques for supporting the evolution of

software development artifacts and developer collaborations

establish a tightly integrated feedback loop comprising steps

for bottom-up activity monitoring, pattern matching and anal-

ysis, and subsequent recommendation and reconfiguration.

Fig. 1. Approach.

Activity Monitoring and Processing

Observation of developer actions is central to many previ-

ous approaches. Our approach foresees instrumenting tools

(beyond IDEs) such as those from the scenario above. We

essentially record which developer is manipulating what ar-

tifacts and, while doing so, communicates with which other

developers.

Activity Monitoring and Aggregation takes the individual

actions, filters out excessive actions, correlates actions, and

resolves uncertainties. The Low-Level Actions are stored in

the Knowledge base (see Fig. 1 center) as a composition of

actions observed. The basic structure of an action is one that

ties together an engineer with an artifact, an activity, and a

tool. For example, Alice added a method to the ComplexAlg1

source file using Eclipse. These tiny fragments are merged

together into a connected network of low-level actions.

Pattern Matching and Analysis

The low-level view serves as the input to three types of

Pattern Matching and Analysis heuristics which extract high-

level dependencies and structures among engineers and arti-

facts. A heuristic focusing on temporal dependencies detects

multiple occurrences of following example event sequence:

{an requirement engineer edits the requirement description,

followed by an email to the software architect, and the

architecture subsequently updating the architecture model}

and concludes that a requirement change is followed by an

architecture change. Multiple, interleaving edits on code file

ComplexAlgorithm1 by developers Alice, Bob, and Carol lead

a collaboration pattern heuristic to the conclusion that the

file is worked upon as a shared artifact rather than a task

specifically assigned to Alice (with Bob and Carol merely

giving advice). Given a set of consistency constraints (e.g.,

each architecture component must map to at least one source

code artifact) and a set of immediate architecture-to-code

mappings, an artifact dependency heuristic may analyze

software source code dependencies and tag supporting code

as relevant to a particular architecture element. Subsequent

analysis calculates pattern-specific properties needed by rec-

ommendation and adaptation algorithms (e.g., update rate for

a shared artifact, average duration between changing code

and running regression tests) before the high-level patterns

are stored in the Knowledge base in form of likely relations,

dependencies, and constraints among developers, tasks, and

artifacts (Fig. 1 upper half).

Recommendation and Adaptation

Rather than having to deal with low-level individual actions,

high-level patterns provide the basis for algorithms that ulti-

mately deliver user recommendations and instrument recon-

figurations autonomously when a change occurs (Fig. 1 top).

Such changes describe high-level pattern events (e.g., new

pattern instances, updated pattern properties) as well as low-

level actions (e.g., a file has been changed). In our scenario, a

combination of three mechanisms assists the engineering team

in the following ways. Activity Flow Advancement exploits

detected temporal patterns. In our scenario it will notify the

software architect of the exact requirement change and the

affected architecture elements if it observes neither commu-

nication between the requirements engineer and the architect

nor read or write access to the affected architecture elements

within a given time frame.

Once the system architect identifies (directly and indirectly)

affected components and connectors, Artifact Dependency

Maintenance identifies the location and cause for potential

artifact inconsistencies. Here, it uses the artifact consistency

patterns to determine the respective primary and secondary

source code artifacts (here: ComplexAlg1, AlgFactory).

Collaboration Change Mitigation assists in determining the

most suited developers based on their involvement in source



code authoring for reflecting the architecture changes in code

artifacts. This mechanism generally deals with undesirable

team-topology situations (e.g., code without responsible de-

veloper). Taking the underlying detected collaboration patterns

into consideration, we may recommend that Carol should take

over sole responsibility for ComplexAlg1 and AlgFactory and

subsequently carry out the change propagation.

While recommendations certainly present a low-invasive

technique to support a software developer team, our ap-

proach foresees also autonomous reconfigurations. Example

adaptations include automatically annotating model and code

artifacts with warnings and information of the ongoing change,

creating a chat room linked to the relevant artifacts and

developers, and even assigning change propagation tasks to

particular engineers.

Discussion

We are of the opinion that near-realtime tool integration is key

for supporting co-evolution of software development artifacts

and collaboration structures. Thus, initially, there will be a

trade-off between (a) achieving high precision and extend of

the collaboration structures and artifact dependencies that are

automatically observable, and (b) simultaneously keeping the

burden onto the developer minimal. Yet, an increase in the

number of integrated tools, the level of observable detail,

and the number of participating developers will enable a

more complete, meaningful view. Note, however, that there

will always be an element of uncertainty in the artifacts

dependencies and collaboration structures we observe due to:

• Incomplete observations: Ideally we would like to capture

complete artifact dependencies and collaboration structures.

Yet, it is likely infeasible to obtain complete developer actions.

Some information communication may be non-accessible or

incomprehensible (e.g., an oral communication) and must be

disregarded. Even communication and manipulations involving

a tool can be problematic. Tools by third party vendors

typically offer only limited monitoring capabilities. Thus only

parts of all development actions are available for reasoning

and recommendation.

• Context switching: A core assumption is that artifacts

investigated and manipulated concurrently are likely dependent

on one another [1]. However, developers typically do switch

between different strands of work dynamically and engage in

frequent short-term side-tracking from their main activity/goal.

While it may thus be impossible to completely eliminate

the possibility of falsely identified dependencies, following

mechanisms address the inherent uncertainty:

• delayed uncertainty resolving: during live editing we

understand temporal dependencies among artifacts and devel-

opers but a latter, fine-grained diffing of artifacts pre-post state

may reveal in more level of detail what exactly was changed.

• continuous pattern refinement: incoming actions allow

for better pattern detection thus enabling refinement or even

revocation of pattern instances.

• probabilistic pattern instantiation: detection algorithms as-

sign probabilities to pattern instantiations and pattern elements

to express uncertainty and thus allowing recommendation

algorithms to trigger only for specified reliability thresholds.

IV. RelatedWork

Collaboration Awareness

In Software Engineering environments, artifacts replace ac-

tivities as the main, explicit element for collaboration and

coordination (merely generic tasks for work assignment re-

main). Most development awareness tools address the code

implementation and maintenance phase; occasionally also the

testing phase. Their primary focus is typically on change

management (e.g., ELVIN/Tickertape, SoftCHANGE), conflict

avoidance (e.g., Palantir, Codebook, RaisAware), and under-

standing developer activities (e.g., FASTDash, Jazz, Ariadne,

Tesseract, ProxiScientia) 1. Figueiredo and de Souza [3] extend

change impact analysis to design artifacts using traceability

links. These tools have several aspects in common. All either

lack near-real time information when relying on code and com-

munication repositories as data source and/or provide near-real

time awareness but remain restricted to a single (stand-alone

or integrated) tool. Awareness information typically consists

of direct relations among artifacts and developers at the

source code level, thereby remaining unaware of consistency

and traceability concerns with design artifacts. Relevance is

derived from an aggregated set of low-level data without

extraction of high-level patterns.

Coordination Requirements

Socio-technical congruence (STC) [4] measures the extent

of developer coordination capabilities meeting the underlying

work coordination requirements. While STC mostly focuses

on alignment (or lack thereof) of task dependencies with

developer communication links, Jiang et al. [5] introduce also

knowledge-centric and resource-centric congruence. Doing so,

existing approaches remain unaware of different dependency

types and corresponding coordination mechanisms [6]. We

propose high-level patterns for better addressing a team’s

various coordination needs. We thereby aim beyond mining

task routing patterns (e.g., [7]) which remain artifact unaware.

Adaptation and Recommendation

Recommendation mechanisms in CWEs and software devel-

opment projects typically determine a set of relevant people

(Ensemble [8]), expertise, and artifacts (code, bug reports,

documentation) for the situation at hand. Relevance arises

from project repositories via topic searches and filters (Ex-

pertise Recommender [9]), task involvement and development

activities (Hipikat/Mylar [10]), frequently or subsequently

visited code (Team Tracks [1]), or developer activity similarity

(Proximity [11]). The later works provide more sophisticated

recommendations as they consider more than only immediate

relations (see also collaboration awareness tools above). In

general, recommendations remain limited to listing/ranking

users or artifacts. To the best of knowledge, no tools exist

that recommend steps or tasks for the underlying situation,

much less autonomously carry out support activities and

collaboration reconfigurations.

1Due to page limits find the respective references in following survey [2].



Flexible process systems

Software development-focused process support takes on var-

ious forms. On the micro-level, Zhao et al. apply Little-

JIL for describing fine-grained steps involved in rework or

refactoring [12]. While this approach captures which arti-

facts where changed by what rework activity, the involved

users and internal dependencies remain implicit. Hebig et al.

[13] describe how various software design and code artifacts

dependencies emerge from MDE activities. Process support

at the macro-level assumes pre-defined process models and

rigorous tool integration. Kedji et al. provide a collaboration-

centric development process model and corresponding DSL

[14]; Moser et al. [15] build an engineering bus for integration

of development activities for flexible industrial automation

systems. These micro and macro-level approaches are software

development artifact aware but lack the required flexibility.

Inconsistency Management and Change Impact

In context of design models, change impact analysis is in

its infancy. Most progress has been on the detecting of

inconsistencies (e.g., [16], [17], [18]) because an inconsistency

is indicative of an incomplete or incorrect change propaga-

tion. There also have been attempts in generating fixes for

inconsistencies [19], [20], [17] where the “fixes” could be

seen analogous to propagated changes. Change propagation

has been addressed more directly by Briand et al. [21] who

identify specific change propagation rules. However, there is

generally no guarantee of correctness associated with change

propagation (which is indicative of the challenges we are ad-

dressing and the heuristical nature we propose). The problem

of change propagation is analogous to the quite extensive

works on model transformation [22] and code generators.

However, our proposed work is meant to be useful for models

(or model elements) that cannot be derived from other models

(or model elements).

V. Conclusions

Extracting high-level patterns for software development

recommendation and adaptation constitutes a great challenge

due to inherent collaboration dynamics and uncertainty but

also promised great benefit. Our upcoming research activities

focus primarily on the technical framework and mechanisms

ultimately aimed at significantly reducing inconsistent and/or

incomplete change propagation. In the course of our research

two main empirical research questions of high significance will

then arise: (i) how precise and comprehensive do we have to

document developer actions, artifacts, and their relations and

(ii) how extensive and invasive may our techniques be when

dynamically reconfiguring a developer team, for example, to

ensure that the most suitable developer available is involved

in a change task.

References

[1] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program
comprehension by sharing navigation data,” in Proc. of the IEEE

Symposium on Visual Languages and Human-Centric Computing,
Washington, DC, USA: IEEE Computer Society, 2005, pp. 241–248.

[2] E. Trainer and D. Redmiles, “A survey of visualization tools
that promote awareness of software development activities,”
Institute of Software Research, University of California, Irvine,
http://www.isr.uci.edu/tech reports/UCI-ISR-09-5.pdf, Tech. Rep., May
2009.

[3] M. Figueiredo and C. de Souza, “Wolf: Supporting impact analysis
activities in distributed software development,” in Cooperative and

Human Aspects of Software Engineering (CHASE), Int. Workshop on,
June 2012, pp. 40–46.

[4] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the design
of collaboration and awareness tools,” in Proc. of the ACM Conf. on

Computer Supported Cooperative Work, New York, NY, USA: ACM,
2006, pp. 353–362.

[5] L. Jiang, K. M. Carley, and A. Eberlein, “Assessing team performance
from a socio-technical congruence perspective,” in ICSSP, 2012, pp.
160–169.

[6] C. Dorn and R. N. Taylor, “Analyzing runtime adaptability of collabora-
tion patterns,” in Int. Conf. on Collaboration Technologies and Systems

(CTS). Los Alamitos, CA, USA: IEEE Computer Society, 2012.
[7] S. Dustdar and T. Hoffmann, “Interaction pattern detection in process

oriented information systems,” Data Knowl. Eng., vol. 62, pp. 138–155,
July 2007.

[8] P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich, M. E.
Helander, P. M. Matchen, A. Empere, P. L. Tarr, C. Williams, and S. X.
Yang, “Ensemble: a recommendation tool for promoting communication
in software teams,” in Int. Workshop on Recommendation systems for

software engineering, New York, USA: ACM, 2008, pp. 1–2.
[9] D. W. McDonald and M. S. Ackerman, “Expertise recommender: a

flexible recommendation system and architecture,” in Proc. of the ACM

Conf. on Computer Supported Cooperative Work, New York, NY,
USA: ACM, 2000, pp. 231–240.

[10] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proc. of the Int. Conf. on Software

Engineering, Washington, DC, USA: IEEE Computer Society, 2003,
pp. 408–418.

[11] K. Blincoe, G. Valetto, and S. Goggins, “Proximity: a measure to
quantify the need for developers’ coordination,” in Proc. of the ACM

Conf. on Computer Supported Cooperative Work, New York, NY,
USA: ACM, 2012, pp. 1351–1360.

[12] X. Zhao and L. Osterweil, “An approach to modeling and supporting
the rework process in refactoring,” in Proc. of the Int. Conf. on Software

and System Process (ICSSP), june 2012, pp. 110 –119.
[13] R. Hebig, A. Seibel, and H. Giese, “Toward a comparable

characterization for software development activities in context of mde,”
in Proc. of the Int. Conf. on Software and Systems Process, New
York, NY, USA: ACM, 2011, pp. 33–42.

[14] K. A. Kedji, R. Lbath, B. Coulette, M. Nassar, L. Baresse, and
F. Racaru, “Supporting collaborative development using process models:
An integration-focused approach,” in ICSSP, 2012, pp. 120–129.

[15] T. Moser, S. Biffl, W. D. Sunindyo, and D. Winkler, “Integrating
production automation expert knowledge across engineering domains,”
IJDST, vol. 2, no. 3, pp. 88–103, 2011.

[16] A. Egyed, “Automatically detecting and tracking inconsistencies in
software design models,” IEEE Transactions on Software Engineering,
vol. 37, no. 2, pp. 188–204, 2011.

[17] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei,
“Supporting automatic model inconsistency fixing,” in 7th Joint Meeting

of ESEC and FSE, Amsterdam, The Netherlands, Aug 2009, pp. 315–
324.

[18] M. Kamalrudin, J. C. Grundy, and J. G. Hosking, “Managing consistency
between textual requirements, abstract interactions and essential use
cases,” in 34th Annual IEEE Int. Computer Software and Applications

Conf. (COMPSAC), Seoul, Korea, July 2010, pp. 327–336.
[19] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency man-

agement with repair actions,” in Proc. of the Int. Conf. on Software

Engineering, Portland, Oregon, USA, May 2003, pp. 455–464.
[20] A. Egyed, “Fixing inconsistencies in uml design models,” in Int. Conf.

on Software Engineering, Minneapolis, USA, May 2007, pp. 292–301.
[21] L. C. Briand, Y. Labiche, and L. O’Sullivan, “Impact analysis and change

management of uml models,” in 19th Int. Conf. on Software Maintenance

(ICSM) Amsterdam, The Netherlands, Sep 2003, pp. 256–265.
[22] J. Cabot and E. Visser, Eds., Proc. of the Int. Conf. on the Theory and

Practice of Model Transformations (ICMT). Springer LNCS, 2011.


